Convergence of Option Rewards for Markov Type Price Processes Modulated by Stochastic Indices
نویسنده
چکیده
A general price process represented by a two-component Markov process is considered. Its first component is interpreted as a price process and the second one as an index process modulating the price component. American type options with pay-off functions, which admit power type upper bounds, are studied. Both the transition characteristics of the price processes and the payoff functions are assumed to depend on a perturbation parameter δ ≥ 0 and to converge to the corresponding limit characteristics as δ → 0. In the first part of the paper, asymptotically uniform skeleton approximations connecting reward functionals for continuous and discrete time models are given. In the second part of the paper, these skeleton approximations are used for getting results about the convergence of reward functionals for American type options for perturbed price processes in discrete and continuous time. Examples related to modulated exponential price processes with independent increments are
منابع مشابه
Relative Entropy Rate between a Markov Chain and Its Corresponding Hidden Markov Chain
In this paper we study the relative entropy rate between a homogeneous Markov chain and a hidden Markov chain defined by observing the output of a discrete stochastic channel whose input is the finite state space homogeneous stationary Markov chain. For this purpose, we obtain the relative entropy between two finite subsequences of above mentioned chains with the help of the definition of...
متن کاملDiffusion Approximations of the Geometric Markov Renewal Processes and Option Price Formulas
We consider the geometric Markov renewal processes as a model for a security market and study this processes in a diffusion approximation scheme. Weak convergence analysis and rates of convergence of ergodic geometric Markov renewal processes in diffusion scheme are presented. We present European call option pricing formulas in the case of ergodic, double-averaged, and merged diffusion geometri...
متن کاملOn $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov processes
In the present paper we investigate the $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov processes with general state spaces. We provide a necessary and sufficient condition for such processes to satisfy the $L_1$-weak ergodicity. Moreover, we apply the obtained results to establish $L_1$-weak ergodicity of quadratic stochastic processes.
متن کاملDerivative Pricing Models with Regime Switching: A General Approach
The purpose of this paper is to demonstrate a general method for incorporating a change in regime into stochastic price processes. The assumed framework is that there are two states of the world, a "volatile" state, and a "normal" state, and the stochastic process followed by asset prices is different depending on the state of the world. This is done using a two-state Markov chain in continuous...
متن کاملA Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind
In the present work, a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind. The solution of the integral equation is described by the Neumann series expansion. Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method. An algorithm is proposed to sim...
متن کامل